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Abstract. A new method to numerically calculate the nth moment of the spin overlap of the two-
dimensional ±J Ising model is developed using the identity derived by one of the authors (HK)
several years ago. By using the method, the nth moment of the spin overlap can be calculated as a
simple average of the nth moment of the total spins with a modified bond probability distribution.
The values of the Binder parameter etc have been extensively calculated with the linear size, L,
up to L = 23. The accuracy of the calculations in the present method is similar to that in the
conventional transfer matrix method with about 105 bond samples. The simple scaling plots of
the Binder parameter and the spin-glass susceptibility indicate the existence of a finite-temperature
spin-glass phase transition. We find, however, that the estimation of Tc is strongly affected by the
corrections to scaling within the present data (L � 23). Thus, there still remains the possibility that
Tc = 0, contrary to the recent results which suggest the existence of a finite-temperature spin-glass
phase transition.

1. Introduction

Over the last two decades, investigations of spin-glass problems have been extensively
performed [1–20]. It is now widely believed that the three-dimensional ±J Ising model shows
a finite-temperature spin-glass phase transition [1–6], while the critical temperature of the two-
dimensional ±J Ising model is zero [5–11]. Most of these studies have been done using Monte
Carlo simulations, where the thermal relaxation time in the simulations becomes very large
in the low-temperature region. This makes the investigations of the two-dimensional models
rather difficult, since the calculations of the physical quantities have to be performed at very
low temperature. In previous studies, the data in the finite-size scaling analysis were in good
agreement with a scaling function with the critical temperature, Tc = 0. The results, however,
have not completely excluded the possibility of a finite-temperature spin-glass phase transition.
Recently, Shirakura et al [12–15] have deduced the existence of a finite-temperature spin-glass
phase transition of the two-dimensional models using extensive Monte Carlo simulations. To
clarify the critical properties of the two-dimensional ±J Ising model, more precise results in
the low-temperature region are necessary.

The transfer matrix method is free from the problem of thermal equilibration, and has been
very successfully used to determine the ferromagnetic–nonferromagnetic phase boundary of
the two-dimensional ±J Ising model in the p–T plane [16, 17] (p is the concentration of
the ferromagnetic bond). But, for the problem of the spin-glass phase transition, the transfer
matrix method has only been used for the calculations of defect energies and correlation
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functions [9, 10], and has not been widely used for direct calculations of the nth moment of
the spin overlap (the spin-glass susceptibility, the Binder parameter, etc) since, when we use
real replicas in the calculations, the maximum linear size applicable is one-half of that in the
calculations of the nth moment of the total spins. Thus, so far, no extensive result for the
spin-glass phase transition with direct calculation of the spin-glass susceptibility etc has been
given by the transfer matrix method.

In this paper, we present a new method to numerically calculate the nth moment of the
spin overlap of the two-dimensional ±J Ising model, using the identity derived by one of the
present authors several years ago [19]. In this identity, the nth moment of the spin overlap
is transformed as a simple average of the nth moment of the total spins with a modified
bond probability distribution. Following a newly developed process, explained in section 2,
we successively make the bond configurations according to the modified bond probability
distribution using the Monte Carlo technique. In each bond configuration, we calculate the
nth moment of the total spins by the transfer matrix method.

We have performed extensive calculations of the nth moment of the spin overlap up to the
linear size, L = 23. The accuracy of the calculations in the present method is similar to that
in the conventional transfer matrix method with about 105 bond samples. Thus, the statistical
errors in the present study are about an order of magnitude smaller than those in previous
studies. Therefore, we can analyse the obtained data in detail using finite-size scaling analysis
including the corrections to scaling. Our results show that the estimation of Tc is strongly
affected by the corrections to scaling in the two-dimensional ±J Ising model. Thus, there still
remains the possibility that Tc = 0, contrary to the recent results by Shirakura et al [12,13,15]
which suggest the existence of a finite-temperature spin-glass phase transition.

2. New calculation method for the spin-glass order parameter

We consider the two-dimensional ±J Ising model on anL×L square lattice with only nearest
neighbour interactions. The Hamiltonian is written as follows:

H = −
∑
(ij)

τij SiSj (1)

where Si = ±1, and the summation of (ij) runs over all the nearest neighbours. We take
the skew boundary condition in one direction, and the free boundary condition in the other
direction. Each τij is determined according to the following probability distribution:

P(τij ) = pδ(τij − 1) + (1 − p)δ(τij + 1). (2)

In this paper, we make J = 1. We define the spin overlap, Q, between two replicas in each
bond configuration as

Q =
N∑
i=1

Sαi S
β

i (3)

where α and β denote the two replicas, and N is the total number of spins. When we define
Kp as

exp(2Kp) = p

1 − p (4)

the 2nth moment of the spin overlap is written as

[〈Q2n〉T ,{Sα,Sβ }]p = 1

(2 cosh(Kp))NB

∑
τij=±1

exp

(
Kp

∑
(ij)

τij

)
〈Q2n〉T ,{Sα,Sβ } (5)



Spin-glass order parameter of the 2D ±J Ising model 3547

where 〈· · ·〉T ,{Sα,Sβ } denotes the thermal average both for the ‘Sα’ and ‘Sβ’ spins in a bond
configuration, {τ } at temperature, T . [· · ·]p denotes the configurational average at the
ferromagnetic bond concentration, p, and NB is the number of bonds [18]. By the use of
a local gauge transformation, an identity has been derived [19]:

[〈Q2n〉T ,{Sα,Sβ }]p = 1

(2 cosh(Kp))NB

∑
τij=±1

exp

(
K
∑
(ij)

τij

)
Z(Kp, {τ })
Z(K, {τ }) 〈M2n〉T ,{S} (6)

whereM denotes the total spins,

M =
N∑
i=1

Si (7)

〈· · ·〉T ,{S} denotes the thermal average for the ‘S’ spins at temperature, T , and Z(K, {τ }) is
the partition function at the inverse temperature,K(= 1/T ), with the bond configuration, {τ }.
We show the summary of the derivation of equation (6) in the appendix. (For the details of the
derivation, see [19].) When we define the modified probability distribution, P2(K,Kp, {τ }),
for the bond configuration, {τ }, as

P2(K,Kp, {τ }) = 1

(2 cosh(Kp))NB
exp

(
K
∑
(ij)

τij

)
Z(Kp, {τ })
Z(K, {τ }) (8)

we can then write

[〈Q2n〉T ,{Sα,Sβ }]p = {〈M2n〉T ,{S}}K,Kp (9)

where {· · ·}K,Kp denotes the configurational average by the modified bond probability
distribution. That is, [〈Q2n〉T ,{Sα,Sβ }]p at temperature T with the ferromagnetic bond
concentration p is transformed into the configurational average of 〈M2n〉T ,{S} by the modified
bond probability distributionP2(K,Kp, {τ }). Similarly, we can get the following identity [19]:

[〈M2n〉T ,{S}]p = {〈M2n〉Tp,{S}}K,Kp (10)

where Tp = 1/Kp. (Note that the above argument applies to any dimension.)
Hereafter, we explain a new approach to numerically calculate the values of

[〈Q2n〉T ,{Sα,Sβ }]p, using equation (9). To realize the bond configuration with the modified bond
probability distribution, P2(K,Kp, {τ }), we use the conventional Monte Carlo technique. We
define W(τij → −τij , {τ }′) as the transition probability by which the value of the bond, τij ,
changes. To guarantee that the stationary probability distribution becomes P2(K,Kp, {τij }),
the following detailed balance must be satisfied:

P2(K,Kp, τij , {τ }′)W(τij → −τij , {τ }′) = P2(K,Kp,−τij , {τ }′)W(−τij → τij , {τ }′).
(11)

Using equation (8), we obtain

W(τij → −τij , {τ }′)
W(−τij → τij , {τ }′) = exp(−2Kτij )

cosh(2Kp)− sinh(2Kp)〈τijSiSj 〉Tp,{S}
cosh(2K)− sinh(2K)〈τijSiSj 〉T ,{S} . (12)

Namely, when we can calculate 〈SiSj 〉T ,{S} in a particular bond configuration, we can estimate
the transition probability.

The processes to calculate [〈Q2n〉T ,{Sα,Sβ }]p are as follows:

(1) We start from an arbitrary bond configuration.
(2) Using the transfer matrix method, we exactly calculate the value of 〈SiSj 〉T ,{S}, and

successively flip the bond, τij , according to the transition probability,W(τij → −τij , {τ }′),
using the conventional Monte Carlo technique.
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Table 1. The values of χSG with various (na, nb, nc) at T = 0.1 for L = 7. The value of ∗ is
calculated by the conventional transfer matrix method using real replicas with 105 bond samples.

(na, nb, nc) χSG

(2000,10 000,10) 29.076(24)
(200,1000,100) 29.084(38)
(20,100,1000) 29.094(35)
(20,20,5000) 29.045(34)
∗ 29.037(35)

(3) We continue process (2) until the modified bond probability distribution, P2(K,Kp, {τ }),
is realized.

(4) We calculate the value of 〈M2n〉T ,{S} for each bond configuration using the transfer matrix
method.

(5) We repeat processes (2) and (4).
(6) Finally, the simple average of 〈M2n〉T ,{S} gives the value of [〈Q2n〉T ,{Sα,Sβ }]p with the bond

probability distribution, P(τij ).

We now show the efficiency of this method. We define na , nb and nc as the number of
initial Monte Carlo skip steps, the number of Monte Carlo steps where we calculate 〈M2n〉T ,{S},
and the number of independent Monte Carlo runs, respectively. In all the calculations, we have
evaluated {τij (0)τij (t)}K,Kp using the statistical dependence time method [22], and find that
the relaxation time of {τij (0)τij (t)}K,Kp is always very small even when compared with one
Monte Carlo step time. That is, only several tens of initial skip steps are enough to realize
the stationary bond probability distribution. For example, we have compared the values of
the spin-glass susceptibility χSG(= [〈Q2〉T ,{Sα,Sβ }]p/N) calculated by the present method and
that by the conventional transfer matrix method using real replicas. Table 1 shows the results
at T = 0.1 for L = 7. The calculations by the conventional transfer matrix method have
been done with 105 independent bond configurations. The error bars of the present method
have been estimated in the same way as those of conventional Monte Carlo simulations. From
table 1, we can see that all the data are consistent within the error bars, and the size of the error
bars of all the calculations are of the same magnitude. Consequently, we find that only 20 steps
are enough for the initial Monte Carlo skip steps. Furthermore, we have examined whether
equation (9) holds or not at p = 0.5–0.95, T = 0.1–0.5 for L = 7. We have also examined
whether equation (10) holds or not at p = 0.8–0.9, T = 0.1–0.4 for L = 15. All the results
are consistent in a statistical sense, from which we conclude that the present method is usable
and not affected by systematic errors.

3. The spin-glass phase transition of the two-dimensional ±J Ising model

We have extensively investigated the two-dimensional ±J Ising model for p = 0.5. The
results of the asymmetric case (p > 0.5) will be given in a subsequent paper [20]. For
p = 0.5, we have calculated [〈Q2n〉T ,{Sα,Sβ }]p at T = 0.1–0.5 with the linear size L = 7–23.
The calculations have been performed with (na, nb, nc) = (200, 1000, 100) for L � 21 and
(200, 200, 480) for L = 23.

The energy gap between the ground state and the first excitation state is two in the unit of
the interaction strength. Thus, in finite systems, any physical quantity at a very low temperature
must saturate to its value at T = 0. We show the temperature dependence of the spin-glass
susceptibility,χSG, in figure 1. We find, indeed, that the values ofχSG for eachL show the strong
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Figure 1. A plot of χSG versus T . Figure 2. A plot of gL versus T .

saturation near T = 0, and the tendency becomes clearer as the system size becomes smaller,
as has already been pointed out by several authors [8, 12, 14]. The Binder parameter [21]

gL = 1

2

(
3 − [〈Q4〉T ,{Sα,Sβ }]p

[〈Q2〉T ,{Sα,Sβ }]2
p

)
(13)

is widely used for the determination of the critical temperature. The value of the Binder pa-
rameter becomes asymptotically size independent for large systems at the critical temperature.
Therefore, the point where this quantity becomes asymptotically size independent gives an
estimation of the critical point. The simple plot of the Binder parameter versus temperature is
shown in figure 2. We can clearly see that the data for different sizes intersect at almost the same
temperature, T = 0.3, and the size dependence of the intersection points is very small. We
cannot, however, immediately conclude that the spin-glass phase transition occurs at T  0.3,
since the intersection might be due to the strong saturation of the data near T = 0 [8, 12, 14].
Therefore, we perform scaling analyses for gL and χSG. There is no general rule to avoid the
disturbance from the saturation mentioned above in the scaling analyses. Here, we adopt a
criterion that every data point is not used all through the scaling analyses, when the value ofχSG

increases less than 3% in the temperature interval, T = 0.05. Although the criterion, which
we have determined from the observation in figure 1, seems rather artificial, we believe that
this criterion systematically removes the saturation to T = 0 in a certain sense. Consequently,
we use, for example, the data with T � 0.35 for L = 7, and with T � 0.2 for L = 23.

First, we perform the scaling analyses without including the corrections to scaling. In this
case, the Binder parameter, gL, has the scaling form

gL = ḡ(L1/ν(T − Tc)) (14)

and that of the spin-glass susceptibility, χSG, is

χSG = L2−ηχ̄(L1/ν(T − Tc)) (15)

where ν is the critical exponent of the spin-glass correlation length, andη is the critical exponent
which describes the decay of the correlation at the critical temperature. Figure 3 shows the
best-fit scaling plot of the Binder parameter, which indicates that Tc  0.3 and the critical
exponent ν  1.3. We can see that the data at T < Tc = 0.3 and T � Tc fit rather well on one
scaling function, which indicates that the spin-glass phase transition of the two-dimensional
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Figure 3. A scaling plot for gL. Figure 4. A scaling plot for χSG.

Figure 5. A scaling plot for gL, assuming Tc = 0. Figure 6. A scaling plot for χSG, assuming Tc = 0.

±J Ising model is a conventional phase transition, and there exists a finite long-range order
at T < Tc. The best-fit scaling plot of the spin-glass susceptibility is also shown in figure 4,
which indicates that the critical exponent η  0.225. The estimated values of Tc and the
critical exponents are similar to those determined by Shirakura et al [12]. Figures 5 and 6
show the scaling plots of the Binder parameter and the spin-glass susceptibility, assuming
Tc = 0, ν = 2.6 and η = 0.2 [8], where we clearly see the systematic deviations. Namely, the
scaling plots without including the corrections to scaling strongly indicate the existence of a
finite-temperature spin-glass phase transition.

Next, we perform the scaling analyses including the corrections to scaling. We take the
scaling forms of the Binder paremeter and the spin-glass susceptibility as

gL = ḡ(L1/ν(T − Tc))
(

1 +
a

Lω

)
(16)
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Figure 7. A scaling plot for gL including the corrections
to scaling withω = 0.5 and a = −0.3, assuming Tc = 0.

Figure 8. A scaling plot forχSG including the corrections
to scaling withω′ = 0.5 and b = −0.3, assumingTc = 0.

and

χSG = L2−ηχ̄(L1/ν(T − Tc))

(
1 +

b

Lω
′

)
. (17)

There is little quantitative change in figures 3 and 4, even though we fit the data using
equations (16) and (17). Thus, when we assume Tc = 0.3, the effect of the corrections to
scaling is rather small. On the other hand, assuming that Tc = 0, ν = 2.6 and η = 0.17 [8],
the data of the Binder parameter and the spin-glass susceptibility fit very well on one scaling
function, respectively, as shown in figures 7 and 8 with ω = ω′ = 0.5 and a = b = −0.3,
although the data with a small linear size, L = 7, deviate from the scaling function. (To fit the
data, we use η = 0.17, which is, for example, consistent with the result in [8], η = 0.2±0.05.)
Thus, including the corrections to scaling, both Tc = 0 and Tc  0.3 are consistent with the
scaling analyses. Furthermore, we find that every temperature for 0 � T � 0.3 might become
the critical temperature, Tc, in this scaling form. Consequently, we find that the estimation of
the value of Tc is strongly affected by the corrections to scaling in the two-dimensional ±J
Ising model within the present data (L � 23).

4. Conclusions

We have developed a new method to numerically calculate [〈Q2n〉T ,{Sα,Sβ }]p of the two-
dimensional ±J Ising model, where, using a local gauge transformation, [〈Q2n〉T ,{Sα,Sβ }]p can
be calculated as a simple average of 〈M2n〉T ,{S} with a modified bond probability distribution.
By using the present method, we have extensively calculated the values of [〈Q2n〉T ,{Sα,Sβ }]p,
where the statistical errors become about an order of magnitude smaller than in previous studies,
and we have investigated the scaling analyses including the corrections to scaling. By using the
scaling analyses without including the corrections to scaling, our data strongly indicate a finite-
temperature spin-glass phase transition. We find, however, that the estimation of Tc is strongly
affected by the corrections to scaling within the data with L � 23, and that every temperature
for 0 � T � 0.3 might be able to become the critical temperature. Consequently, our results
indicate that there still remains the possibility that Tc = 0, contrary to the recent results of
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Shirakura et al [12,13,15] which suggest the existence of a finite-temperature spin-glass phase
transition.
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Appendix

In this appendix, we briefly explain the derivation of equation (6). We show that both sides of
equation (6) coincide with each other.

Using equation (5), [〈Q2n〉T ,{Sα,Sβ }]p is written as

[〈Q2n〉T ,{Sα,Sβ }]p = 1

C

∑
τij=±1

exp

(
Kp

∑
(ij)

τij

)〈( N∑
i=1

Sαi S
β

i

)2n〉
T ,{Sα,Sβ }

(A.1)

and we abbreviate (2 cosh(Kp))NB as C from now on.
Here, we perform the following local gauge transformation:

τij → τij σiσj Sαi → Sαi σi S
β

i → S
β

i σi (σi = ±1) (A.2)

where each σi arbitrarily takes +1 or −1. Since 〈(∑N
i=1 S

α
i S

β

i )
2n〉T ,{Sα,Sβ } is invariant under

this transformation, we obtain

[〈Q2n〉T ,{Sα,Sβ }]p = 1

C

∑
τij=±1

exp

(
Kp

∑
(ij)

τij σiσj

)〈( N∑
i=1

Sαi S
β

i

)2n〉
T ,{Sα,Sβ }

(A.3)

where we note that the summation over τij σiσj = ±1 is equivalent to that over τij = ±1. As
each σi arbitarily takes +1 or −1, therefore we take all the summations of σi and divide by 2N ,
namely

[〈Q2n〉T ,{Sα,Sβ }]p = 1

C

1

2N
∑
σi=±1

∑
τij=±1

exp

(
Kp

∑
(ij)

τij σiσj

)〈( N∑
i=1

Sαi S
β

i

)2n〉
T ,{Sα,Sβ }

= 1

C

∑
τij=±1

Z(Kp, {τ })
2N

〈( N∑
i=1

Sαi S
β

i

)2n〉
T ,{Sα,Sβ }

. (A.4)

Next, we consider the rhs (we denote it as A) of equation (6). The rhs of equation (6) is
written as

A = 1

C

∑
τij=±1

exp

(
K
∑
(ij)

τij

)
Z(Kp, {τ })
Z(K, {τ })

〈( N∑
i=1

Si

)2n〉
T ,{S}

= 1

C

∑
τij=±1

exp

(
K
∑
(ij)

τij

)

×Z(Kp, {τ })
Z(K, {τ })

∑
Si=±1 exp(K

∑
(ij) τij SiSj )(

∑N
i=1 Si)

2n

Z(K, {τ }) . (A.5)
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Here, we perform the same local gauge transformation. Then, we obtain

A = 1

C

∑
τij=±1

exp

(
K
∑
(ij)

τij σiσj

)
Z(Kp, {τ })
Z(K, {τ })

×
∑
Si=±1 exp(K

∑
(ij) τij SiSj )(

∑N
i=1 Siσi)

2n

Z(K, {τ })
= 1

C

∑
τij=±1

Z(Kp, {τ })

×exp(K
∑
(ij) τij σiσj )

∑
Si=±1 exp(K

∑
(ij) τij SiSj )(

∑N
i=1 Siσi)

2n

Z(K, {τ })2

= 1

C

∑
τij=±1

Z(Kp, {τ })
2N

×
∑
Si ,σi=±1 exp(K

∑
(ij) τij σiσj ) exp(K

∑
(ij) τij SiSj )(

∑N
i=1 Siσi)

2n

Z(K, {τ })2

= 1

C

∑
τij=±1

Z(Kp, {τ })
2N

〈( N∑
i=1

Siσi

)2n〉
T ,{S,σ }

. (A.6)

Thus, from equations (A.4) and (A.6), we conclude that both sides of equation (6) coincide
with each other.
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